Теоретические основы автоматизации
Классическая модель технологического воздействия Дарона Аджемоглу и Паскуаля Рестрепо, опубликованная в Journal of Economic Perspectives (Automation and New Tasks: How Technology Displaces and Reinstates Labor 2019). Согласно их модели, развитие технологий вызывает противоречивые эффекты: с одной стороны, автоматизация и роботизация ведут к сокращению рабочих мест и угрожают ростом безработицы. С другой стороны, они создают спрос на новые, ранее не существовавшие специализации и тем самым обеспечивают рост занятости.
Эффект замещения проявляется в том, что капитал становится субститутом труда, сокращая его долю в добавленной стоимости. Эффект производительности, в свою очередь, заключается в том, что автоматизация формирует спрос на новые неавтоматизированные, трудоёмкие задачи.
Например, в текстильной промышленности автоматизация привела к появлению таких трудоёмких задач, как компьютерный дизайн, новые методы исследований рынка, разнообразные специализации по управлению спросом на продукцию и т. д.
Эмпирические данные по отраслям
Исследование Becker Friedman Institute (2025) в Дании показало, что при активном использовании ИИ-инструментов 64–90% работниками в IT и юридическом секторе, общая занятость осталась стабильной. Это противоречит прогнозам ОЭСР, ожидавшей роста регионального неравенства из‑за разной скорости адаптации. Разрыв объясняется лаговым эффектом: предприятия сначала инвестируют в технологии, а оптимизация штата происходит поэтапно. В IT-секторе Дании, где 34,7% задач подвержены автоматизации, компании перераспределяют сотрудников на разработку ИИ-решений вместо сокращений.
Влияние на заработные платы: микро- и макроуровень
Индивидуальные доходы
Датское исследование выявило слабую корреляцию между использованием ИИ и ростом заработков: лишь 3–7% работников, сэкономивших время, получили повышение оплаты. Прибыль от автоматизации преимущественно реинвестируется в технологическое развитие, а не в повышение зарплат. В США доля труда в национальном доходе снизилась с 63% до 58% за последнее десятилетие, что создаёт риски усиления неравенства при широком внедрении генеративного ИИ.
Региональная асимметрия и цифровое неравенство
Городские vs сельские районы
После пандемии COVID-19 регионы стран Организации экономического сотрудничества и развития (ОЭСР) столкнулись с рядом проблем:
снижение темпов роста производительности (в 50% регионов — менее 0,8% в год); демографическое давление (к 2042 году дефицит рабочей силы из‑за старения населения может достичь 9%); неравенство (разрыв в уровне занятости между передовыми и отстающими регионами в Колумбии составляет до 34 процентных пунктов).
Влияние искусственного интеллекта:
Шанс для регионов: сокращение разрыва между развитыми и отстающими территориями; повышение производительности, особенно в когнитивных задачах; решение проблемы нехватки кадров в таких сферах, как здравоохранение, информационные технологии и «зелёные» отрасли.
Риски: 25% работников ОЭСР уже используют искусственный интеллект, а к 2024 году до 90% профессий в сфере информационных технологий будут подвержены его воздействию; женщины более уязвимы: 47% рабочих мест в медицинских профессиях с высоким риском автоматизации заняты женщинами; творческие и IT-профессии (программисты, дизайнеры, журналисты) находятся в зоне максимального риска.
Региональные различия: Города против сельской местности: в Европейском союзе 36% городских работников подвержены влиянию искусственного интеллекта по сравнению с 21% в сельских районах; столицы восстанавливаются быстрее (+0,3 процентных пункта к занятости); дефицит кадров в пять раз выше в регионах с высокой занятостью.
Решения для властей: Инвестиции в цифровую инфраструктуру: без неё искусственный интеллект усилит неравенство. Переобучение: акцент на «зелёные» и цифровые навыки (в ЕС 80% компаний уже испытывают их нехватку); поддержка малого и среднего бизнеса (например, программа SMEs-Digital в Германии). Стимулирование искусственного интеллекта в государственном управлении: автоматизация рутинных задач (чаты для граждан, обработка документов); проекты, подобные GA‑AIM (США, 65 миллионов долларов на интеграцию искусственного интеллекта в промышленность Джорджии).
Успешные примеры: Канада: снижение платы за детские сады до 10 долларов в день привело к увеличению занятости женщин до 79,7%. Япония: закон о занятости пожилых людей позволил 69% компаний сохранить сотрудников после 65 лет. Европейский союз: программа RES-SKILL — переподготовка шахтёров для работы в сфере «зелёной» энергетики.
Трансформация навыков и переобучение
Сдвиг в требованиях к компетенциям
Анализ 711 профессий в США выявил три кластера навыков с разной экспозицией к автоматизации: языковые (68%), аналитические (45%) и креативные (12%). Возникают гибридные специальности, такие как промпт-инженеры, сочетающие технические и коммуникативные навыки. В Дании сектор Data & AI активно развивает вакансии для ИИ-архитекторов и инженеров машинного обучения с зарплатами на 30% выше среднего.
Изучение особенностей исследований в области генеративного искусственного интеллекта.
Ключевой причиной разнородности результатов являются различия в методологии. Исследователи используют разные аналитические рамки.
Методология существенно влияет на результаты. Одни исследования опираются на теоретические принципы изучения ИИ и его влияния на конкретные процессы (например, образовательные), другие анализируют использование ГИИ в социальных медиа и СМИ, выявляя контексты, в которых технология формируется сообществами.
Различные методологические основания естественным образом приводят к разным результатам, поскольку исследователи концентрируются на разных аспектах технологии и её применения, используют различные критерии оценки и аналитические инструменты.
Генеративный ИИ эффективен в разных контекстах. В образовании он помогает решать сложные вопросы, что меняет подходы к тестированию. Однако в глубоком контент-анализе или аргументации результаты могут быть непредсказуемыми.
В основе генеративного моделирования лежит математический подход. Он позволяет оценить вероятность совпадения определённых параметров, анализируя распределение различных характеристик данных и их взаимосвязей. Это объясняет, почему в некоторых областях генеративный искусственный интеллект (ГИИ) показывает более высокие результаты, чем в других.
Вероятностный характер генеративных моделей означает, что их эффективность во многом зависит от качества и репрезентативности обучающих данных для конкретной области.
Оценка эффективности генеративного ИИ представляет значительную методологическую проблему. Отсутствие единых критериев и стандартов оценки создаёт ситуацию, при которой различные исследования могут приходить к противоположным выводам.
В образовательном контексте возникает необходимость разработки новых критериев для оценки работ, созданных с помощью ГИИ. Среди предлагаемых критериев:
Степень творческой переработки собранного ГИИ материала, а не простое копирование. Использование технологий ГИИ согласно этическим принципам и информирование об объёме и видах выполненных с его помощью работ. Способность учащихся к рефлексии относительно использования ГИИ в процессе выполнения заданий.
Комплексная природа генеративного ИИ требует многогранного подхода к оценке его эффективности. Простые бинарные оценки «эффективен/неэффективен» не могут отразить всю сложность взаимодействия этой технологии с различными областями применения.
Генеративный ИИ применим в широком спектре отраслей, но его эффективность трудно оценить обобщённо. Он создаёт новый контент (текст, аудио, изображения, видео), что открывает неограниченные возможности.
В религии дискуссии о применении ИИ ограничены и сосредоточены на его границах и рисках.
В образовании ИИ может использоваться для мультимодальных проектов, аргументации и анализа. Это требует разработки новой дидактики, учитывающей его роль как «третьего» субъекта взаимодействия.
Каждая отрасль специфична, что влияет на результаты исследований в конкретных областях.
Эксперты по генеративному ИИ имеют разные взгляды из‑за специализации, опыта и отношения к инновациям. В науке ИИ рассматривается как благо и экзистенциальный риск, что приводит к разнообразию оценок.
Заключение
Текущее влияние генеративного ИИ напоминает эффект Джевонса: рост производительности перенаправляет спрос на труд в новые сферы.
Однако риски концентрации богатства и регионального неравенства требуют превентивных мер. Синтез данных подтверждает, что при грамотном управлении ИИ становится инструментом создания новых типов занятости, но реализация потенциала зависит от согласованных действий государства, бизнеса и образовательных институтов.